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ON THE STABILITY OF A FREELY INTERACTING BOUNDARY LAYER* 

V.I. ZHUK and O.S. RYZHOV 

There is considered the stability of a plane-parallel boundary layer on a plate 
relative to three-dimensional longwave perturbations. The Prandtl equationsareused 
to describe their development in time, where the pressure gradient is assumed to be 
induced by internal wave interaction with the external potential flow. For an in- 
compressible fluid the approach mentioned yields results that follow from ordinary 
linear stability theory under the condition that the critical layer of neutral oscil- 
lations adjoins the streamlined surface. For a subsonic velocity at infinity the 
dispersion relation for the spatial perturbations reduces to the standard form, #at 
gives the parameters in a nonstationary two-dimensional free interaction process. 

1, Viscous sublayer. For any (either sub- or supersonic) velocity at infinity, free 
boundary layer interaction is subject to the Prandtl equations for an incompressible fluid in 
the near-wall domain /l-44/ 

(1.1) 

Here a special dimensionless system of reference units is used in which t denotes the time, 
x,y and z are Cartesian coordinate axes, tb,v and ware velocity vector projections on the 
designated axes, and pis the excess pressure. In classical boundary-layer theory, the pres- 
sure is found in advance by solving the external problem about the flow over a given body by 
an inviscid gas. The free interaction process is characterized by the fact that the pressure 
refers to a number of required functions , and is determined by combining the solution for the 
near-wall layer with the solution that yields the external potential flow parameters. The 
combine conditions will be formulated later. 

For simplicity, we consider the streamlined body to be a flat plate. The adhesion condi- 
tions on its surface y -0 are 

u=~=u?=o 

We seek the solution of (1.1) in the form 

(1.2) 

u=y-C+xp(ot+k;E+Ze), v=agexp(ut+kz+lz) 

w=--a-$-exp(otfkz+Zz), p=aexp(ot+k;t-+Ez) 

(1.3) 

and we linearize the resulting relationships with respect to the perturbation amplitude a. 
Formulas (1.3) are traditional in stability theory /5,6/; they permit going from partial to 
ordinary differential equations for the functions f,g and h. Integrating oneofthemyields 
the final relation 

g=kf+n 
which can be used to eliminate g. The other two functions f kina h satisfy the equations 

(1.4) 
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On the basis of an idea by Squire /5,6/, we multiply the first one by k,the second hy i 
and we add the relationships obtained in this manner. We consequently arrive at one differen- 
tial equation for a new required function F 

Let us note that the function f satisfies exactly the same equation if the parameters of the 
freely interacting boundary layer are independent of z. On the plane of the complex varia- 
ble Z the equation (1.5) reduces toan Airey equation 

$f$-((Otkyy)~+kF=,O, F=+ @f t 4 L 

EF -_ 
db 

z g = 0, Z = -$ + k'lry il.61 

for dWdZB. In order to extract the regular branch ofthe three-valued function k'/*, wemake 
a slit in the k plane from theoriginto infinity along the negative real half-axis. We set 
arg k’fa = 0 on the positive real half-axis. Then the inequalities --n/3 < arg kli* < n/3 will be 
valid. 

The adhesion conditions (1.2) permit formulation of boundary conditions for the function 
F. Namely, we have F = dFldZ = 0 for Z = wlk’l* . Eliminating the solution of (1.6) that 

grows exponentially at infinity, and complying with the boundary conditions mentioned, we find 

F=_-[- d$(5) 1-l [dZ'~Ai(Z")dZ", F;=--$- 
6 c 

(1.7) 

where Ai (Z) is the Airey function. In order to set up a relation between the frequency wand 
the wave numbers k and 1, we turn to the external flow domain in which the influence of vis- 
cosity and heat conduction can be neglected. 

2. Potential flow. Here the excess pressure satisfies the equation 

(2.1 

in which there are no time derivatives /3,4/. The length measurement scales along the x,z 
axes and the pressure p’ in the external domain remain the same as in the viscous sublayer, 
however the length scale for the transverse y' coordinate is introduced differently. It is 
henceforth not required to know the exact relationship between the scalesinwhichthedistances 
along the normal from the streamlined plate are measured in the different domains. As usual, 
&Z, denotes the free-stream uniform flow Mach number. The upper sign in front of the first 
term in the left side of (2.1) is taken for hf, >1 and the lower sign for M,<1. 
After having solved (2.1), the vertical component v' of the velocity vector is determinedfrom 
the relationship x 

v' = - ) M2, - 1 IV -& 
s p’ @a 5, Y’, 2) dE (2.2) 

when the perturbations damp out upstream at infinity, or by an equivalent formula for oscil- 
lations periodic in 5. 

The dependence of the desired gas parameters on the time and coordinates measured along 
the plate surface should be conserved in the potential domain exactly as was selected for the 
viscous near-wall sublayer. Namely 

p’ = UP’ exp(ot + hi -+ Zz) 

After substituting this into (2.1), we obtain an equation whose solution is 

P’ = exp (my'), m = i [I M-2 - 1 1-V T ka]‘12 (2.3) 

where the square root is understood to be the branch with Re m < 0. This latter requirement 
assures perturbation attentuation as y' +OQ. However, a dependence between the wave numbers 
k and 1 can be indicated when Rem = 0 for both branches of the root. Such a situation will 
not be examined later. 

By using the formula (2.2) for the transverse velocity vector component, we finally have 

p' = aexp(ot + k.~ + my’ + lz) (2.4) 

v'=-a~IM~--lI'/'~exp(ot+k~+my'+lz) 
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We find the function A(t, x,z) on which depends the magnitude of the instantaneous dis- 
placement of the streamlinein the fundamental boundary-layer thickness that separates thethin 
near-wall region from the outer potential flow. As is shown in /l-44/ 

dAldx = - 1 Ma2 - 1 I-W (t, z, 0, z) 
from which we conclude that 

A=asexp((Llt+k.z+Zz) (2.5) 

3. Dispersion relation. Let us combine the solution for the viscous sublayer with 
the solution giving the gas parameters in the external domain. The combine conditions are 
in /l-44/: for y +co 

x e 

p +P'(& r, 0, z), u-y-A++; s G 5 p'(t>S',O>z)dE', 
i ax 

w+--Y= s P'@> &I 0, 4% (3.1) 
-m -co 

It is seen that joining the excess pressures in both solutions sei^,, by (1.3) and (2.4), 
occurs automatically. Let us turn to the second condition in (3.1) by initially neglecting 
the transverse member in the right side that damps out as t/y as y +co. On the basisof (2.5), 
we find for the function A 

dfldy --f - mlka when y + m (3.2) 

Because of the third condition in (3.1), the side component of the velocity vector ut +O 
as y-+00. Hence 

dhldy +O wheny +m (3.3) 

Recalling the definition (1.5) of the function F and combining the limit relationships 
(3.2) and (3.3), we conclude that 

dF m 

dZ --+ - ,+‘/a (k2 + 9 
whenIZI--,oo (3.4) 

As already noted above, the equation for F agrees with the equation describing waves 
propagation in plane-parallel flows. Hence, the solution (1.7) does not differ in form from 
that to which the nonstationary two-dimensional free boundary-layer interaction process is 
subject. However, the limit condition (3.4) contains a dependence on both the free-stream 
Mach number and on both wave numbers k and 1. It is understandably desirable to convert it 
in such a way that it would agree with the analogous condition from the theory of the plane- 
parallel boundary layer. 

In deriving the dispersion relation, we limit ourselves to just subsonic flows with 
M,<i. It is then natural to consider that the wave numbers kand I are pure imaginaries, 
and 

m = - [ 1 k la + I Maa - Z I--1 1 I [2]‘/* 

where the square root is understood to be the arithmetic value. We set 

Both these equalities define a new parameter identically (the reduced wave number) 

(3.5) 

(3.6) 

The upper sign in (3.5) and (3.6) is taken for In& >O, and the lower for Imk<O. Since 
the ratio (h? + P)/m is positive, the arguments k and K agree. The limit condition (3.4) 
takes the required form 

dF/dZ +~aK-‘ls when) Z I +m (3.7) 

The constant 6 in the solution (1.7) changes during transformation of the wave numbers. 
In order to retain its form invariant, we supplement (3.5) and (3.6) by the definition of the 
reduced frequency 

c0+&-)% (3.8) 

where the arguments o and Pare identical. Then, in fact, 6 = &?I* = Q/K’b By satisfying 
the boundary condition (3.7), we arrive at the dispersion relation 
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in the standard form fox the theory of plane-parallel flows. It is seen from the expression 
(1.7) for the complex variable Z that the selection made above of the branch kv* of the 
three-valued function will assure convergence of the improper integral in the left side of 
(3.9) after the passage to the new parameters. 

If M, = 0, which corresponds to an incompressible fluid,therootis m = -( jk I2 -1 j I I’)‘/*, 
from which 

(3.10) 

4, Stability criterion. The dispersion relation (3.9) possesses an uncountable set 
of roots. In order to see this, we use the results elucidated in /?/. The asymptotic expan- 
sion of the Airey function in the neighboxhood of the real negative half-axis as IZl -+O" 
can be written as 

(4.1) 

where the regular branches of the multivalued functions are extracted by using the inequalit- 
ies &<argZ <kc/3 of the branchesof the argument of the complex variable 2. Let us put 
6 = argc = x +8', and let us introduce the parameter x = 8' I< la/‘. Let Cl'<1 and x< 1 while 

I< I>i. We now use the asymptotic formula (4.1) in which we retain only the principal terms, 
to simplify the dispersion relation. Summarizing, we find 

(4.2) 

The upper sign is taken here for Im K>O, and the lower for ImK<O. The first of the 
equalities (4.2) is to determine ICI. For finite values of \K 1 and 15 1 +ca we approximat- 
ely have 

This formula can understandably be used only for sufficiently large j. From the second rela- 
tionship in (4.2) we find 

W=j-(-l)j(l/Z/2)lKr/s [iz_n(j ++)I-"' 

Therefore, an uncountable set of eigenvalues Re&, Im& correspond to each value of 1 K I, 
from which fieaI, fm& are computed. Is is convenient to give the wave numbers k,f in the 
calculation, and to determine thereby the magnitude of the root mfrom the second equality in 
(2.3). Formula (3.6) is for finding the reduced wave number K. Having obtained the value 
of 91 we can return to the original frequency o1 by using the relationship (3.8). 

Since erg K = Sd2, and argc is close to n, then arg9) will differslightlyfrom nfn/3. 
But arg 01 = afg&, hence Re q<O for sufficiently large j. The main deduction of the asym- 
ptotic analysis of the roots of the dispersion equation (3.9) is the following: free inter- 
action of the internal waves being propagated in the boundary layer with a subsonic external 
flow is stable if f Cjl>i. For a supersonic free stream velocity this conclusion is valid 
for all modes, including those appropriate to finite values of i t I. The recent investiga- 
tion /8/ showed, however, that the first mode of two-dimensional perturbations in a freely in- 
teracting incompressible boundary layer can turn out to be both stable and unstable, depending 
on the magnitude of the wave number k. Since the dispersion equation (3.9) does not contain 
the Mach number M, explicitly, then for any free-stream subsonic velocity its first root 51 
will yield not only positive but also negative values of Reo, for variations of both wave 
nwnbers k, I, prescribing the form of the spatial perturbations. 
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The dependences of the real and imaginary parts of the reduced frequency Q on the absol- 
ute value of the reduced wave number K for the first three roots of the dispersion equation 
(3.9) are shown in Figs.1 and 2 (curves l-8, respectively). The dashed lines 1',2',3 are 
superposed on these same figures to compare the results of solving the dispersion equationin 
application to the supersonic boundary layer (in this case the right side of (3.9) Q=FiKV' 
should be replaced by Q= -&I’, where K=k, Q= 0). The behavior of the curves in Fig.1 con- 
firms the deduction formulatedaboveabouttheinstabilityoftheprocessoffree first-modeinter- 
action with the subsonic external flow if (Kj>K,. According to the calculations performed, 
the number corresponding to the neutral oscillations is I(, = 1.nno5. 

It is appropriate to recall now that all the considerations elucidated above were in the 
special dimensionless system of units. Going from the frequency o and the wave numbers k and 
1 in this system over to the frequency Y and the wave numbers a, y in the original (also 
dimensionless) system of units is accomplished by means of the formulas /l-4/ 

(4.3) 

Fig.1 

Here Nne denotes the Reynolds 
number, C is the constant from the 
linear Chapman law for the viscosity 
and heat conduction coefficients, and 

T* and T, are the temperatures of 
the plate and the freestream, respect- 
ively. The constant L is determined 
by using the equality dU, (O)/dy, = 
liC+ ( T,J To&= in which the function 
U, gives the distribution of the 
longitudinal component of the veloc- 
ity vector in the unperturbed bound- 
ary layer as a function of its trans- 

According to 
:=";,:51::,"E::io; 'A- 0.3321. 

Subsitution of the formulas (4.3) 
into the dispersion relation (3.9) 
permits writing an expression for the 
constant 6 as 

(4.4) 

and converting its right side Q to the form 

Q - exp ( “‘) f T z C”‘h-‘I*N;) 1 M’, - i Id”*. (T,/T,)’ 1 a I’/. (I a 1’ + 1 y I’)// p 1 (4.5) 

I p I - I I a I* + I M,’ -1 1-l I 0 lW 
As is clear from the above, the stability condition for a freely interacting subsonic 

boundary layer on a plate is 

c”‘a--it 1 M”, - 1 I-“‘(T,/T,)’ 1 a 1 ‘b (I a I’ + 1 y la)/1 p I< K;” (4.6) 

Here the equality sign corresponds to neutral oscillations whose amplitude remains invari- 
ant with time. 

The criterion (4.6) permits making definite conclusions about the position of the neutral 
curve in the plane Na,lal which is ordinarily used in linear stability theory. An increase 
in the subsonic free stream Mach number shifts this curve downward if the Reynolds numbers is 
fixed, where the influence of the Mach number diminishes for three-dimensional perturbations. 
Cooling the plate leads to the opposite result: the neutral stability curve is shifted upward. 
Heating the streamlines surface is equivalent in action to increasing the Mach number at in- 
finity. Superposition of oscillations in the side direction will diminish the critical values 
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of Ia 1 for which the perturbation amplitude is kept constant in time; for large values of /y/ 
the change in Mach number has slight effect on the location of the neutral curve. Moreover, 
this curve can be shifted downward or upward depending on the magnitudes of the constants C 
and h, in particular, diminutionofthe parameter h causes diminution in the critical value 
of ) al for a given Reynolds number. 

5. The fUnCtiOn h. There remains to investigate the solution of the second equation 
from the system (1.4), to confirm the validity of the deductions made above. Using the nota- 
tion dh/dy= H, we write it in the form of an inhomogeneous Airey equation 

dzH/dZ2 - ZH = - 1 i h+ (5.1) 

on the plane of the complex variable Z. Application of the results elucidated in /7/ yields 
the following expression for the second linearly independent solution Bi(Z) of the qirey 
equation 

Bi (2) = exp (G i) Ai (Z exp ($ i)) + exp (- G i) Ai (Z exp (- --$- i)) (5.2) 

The behavior of the function Bi(Z) in different sectors of the plane Z as IZ 1 +OCI is 
established by using the asymptotic expansion (4.1) of the Airey function. It can be verified 
that in thesector extracted by the inequalities -n/3 < arg Z < nl3 

Bi (Z) = .-& exp (+ Z”‘) 2 (- I)“‘c,Z-~“~-‘~* 
m--o 

Let us first evaluate the Wronskian Wof the solutions Ai and Bi(Z). According to the 
general theory of ordinary differential equations w= Con& Application of the expression 
(5.2) to find the numerical value of the constant turns out to have slight effect, consequent- 
ly, we turn to the asymptotic formulas (4.1) and (5.3). We consequently find W= l/n. The 
general solution of (5.1) can now be represented as 

z z 

H=alAi(Z)+alBi(Z)+s[ Ai(7) Bi(Z')dZ'-Bi(Z) Ai(Z')dZ' J s 
6 

s 1 
6 

By using the asymptotic expansion of the functions Ai and Bi(Z) in the sector-nl3< 

argZ(nl3, we establish the behavior of H as IZI+oO. In a first approximation, an estimate 
of the integral terms contained in the square brackets in the right side of (5.4) yields 

Ai(Z){Bi(Z')dZ'=-&++... 

E 
_ 

Bi(Z)~Ai(Z')dZ'=.&-&axp(-$Z*~')~Ai(Z')dZ'---&-~+... 
t 6 

(5.5) 

In order to eliminate exponential growth of H as lZ 1 +m, it is necessary to set 

as=-$-[Ai(Z)dZ 

From the adhesion condition on the streamlined surface: H=O for z=5, there follows 

~1 = - -$ Bi(c)[Ai(G)]-l 1 Ai (Z)dZ 
t 

Combining the results obtained, we have the expression 

cs 

H=-$ 15 
(Bi(Z)iAi(Z')dZ'+Ai(Z)L Bi(Z')dZ'-$# 

3 

{Ai(Z')dZ'~l) 
z t 

It retainsits meaning for all 5 since the zeroes of the Airey function situated on the 
negative real half-axis do not agree with the roots of the dispersion relation (3.9). Accord- 

ing to the asymptotic estimates (5.51, as lZI-+-J 
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1 i H-P--+-.... 
k% 2 

Ne now turn to the third condition in (3.1) which was satisfied only roughly above in the 

form (3.3). More accurate calculations show that dh& +l/ (kg) as g --too. This relation writ- 
tenonthe plane of the complex variable 2 agrees exactly with (5.6). It can be seen that 
taking account of the correction term proportional to l/y in the second condition in (3.1), 
which had earlier been neglected for simplicity, does not change the form of (3.4) if the 
asymptotic representation (5.6) is taken into account for the function H. Therefore, the 
investigation of the second equation from the system (1.4) permits more accurate compliance 
with the conditions for combining the solutions for the viscous near-wall sublayer and the 
external potential flow. 

6. Boundary layer in an incompressible fluid. In conclusion, we discuss briefly 
the results of linear stability theory in application to the boundary layer on a flat plate 
streamlines by an incompressible fluid. 

Formulation of the general problem about flow stability and the main results of its in- 
vestigation are elucidated in the books /5,6/. A description is contained therein, of the 
stability curves in the plane NRe,IaI determined by different, including numerical, methods, 
and a comparison is given between the data of theory and experiment. A detailed analysis, re- 
cently undertaken which includes taking account of several correction factors, permitted to 
establish the form of the lower branch of the neutral curve /9/ with great accuracy, where a 
three-layer flow model was used in this analysis which had been taken in the theory of free 
interaction. 

The stability analysis is based on the Navier- Stokes equations and not on the simpler 
Prandtl equations. In reducing the Navier-Stokes equations to dimensionless form we select 
the distance from the nose of the plate, the free-stream velocity, and the fluid density as 
the fundamental measurement units. In this dimensionless system of units, the solution for 
the components U", V" and woof the velocity vector, and the pressure p" as a function of the 
time to and the Cartesian coordinates 9, y",zo are represented as 

@"--v0, vO, w", Pa--d= {UlJ Vl, WlJ PlI exp(@ + a.? + yz") (6.1) 

Here the function U0 yields a distribution of the longitudinal velocity vector compon- 
ent in the unperturbed flow along the transverse coordinate y', the value of the constant P, 
is determined by the pressure in the free-stream, the complex amplitudes ur, v,, w1 and p1 sat- 
isfy the ordinary differential equations obtained by linearization of the Navier-Stokesequa- 
tions. Therelationshipsbetweenthe frequencies o and Y and the wave numbers k, 1 and a, y are 
established by (4.3) which reduce in the case under consideration to 

o= h-'l~N;& k = h-%NReur I= h-V@&, (6.2) 

Let us consider the equation for the complex amplitudes. Following Squire, we put /5,6/ 

and use the notation c = - via for the phase velocity of the wave. The continuity equation 
is here satisfied identically, and the rest are converted as follows: 

(6.4) 

The first of the equations written is the Orr- Sommerfeld equation for the function P 
with the sole difference that the modified Reynolds number is NW* = aNR&. The second equa- 
tion in (6.4) is to evaluate p1 = ap*/p. Therefore, the problem of spatial waves being prop- 
agated in an incompressible boundary layer on a plate will reduce to an analogousproblemabout 
perturbed plane-parallel flow /5,6/.Ananalogousconclusion was formulated above within the 
framework of the theory of free interaction, where (1.5) and (6.3) by means of which the new 
desired functions F and F”were. introduced, differ only by a nonessential scale factor. 
Furthermore, as is shown in /8/, the solution of the problem of stability of the incompres- 
sible boundary layer relative to two-dimensional perturbations agrees completely with the 



410 V.I. Zhuk and O.S. Ryzhov 

solution predicted by the theory of free interaction if Ial *co, 1 crl/fKe -+U and IVa,. -+m. 
It hence follows that the deduction about what is the nature of three-dimensional perturbation 
development in the boundary layer on a plate can be given a basis by a study of its free in- 
teraction with an external potential flow under the conditions that I pl -to, NE,* -00 and 
the ratio la I/ /p 1 is on the order of magnitude of one. No special investigation of (6.4) is 
required since all the results needed are in /8,9/. 

Within the boundary layer the function is U,(y")= Cr,(y,). The passage from this to the mod- 
ified Reynolds number denotes an affine stretching of the coordinate Y 2 in conformity with the 
equality y,=I/&,*. Since V,(y,)=Up*(y2*), the phase velocity of the wave must be kept invari- 
ant. This requirement implies the expression v = av*/p for the three-dimensional perturbations; 
indeed c = -v/a = --Y*/P. Now turning to /8,9/, we at once write down the dispersion relation 

(6.5) 

where the upper sign is taken for lmCL>O and the lower for lmP<oO, the constant is h -- 
1/Tpb*because of the equality )\y,=h*yp*. It is seen that the expression for 5 in (6.5) agrees 
with that in (4.4). The velocity field for incompressible fluid flow is independent of the 
parameters C and TWIT,, and the Mach number is &1_=0. Under these conditions the rightside 
Q of the dispersion relation under consideration goes over into (4.5). The relationship to 

the frequency o and the wave numbers k,l that were used to study the free boundary-layer in- 
teraction with the external potential flow is realized by using (6.2). The canonical form of 
the dispersion relation (3.9) is obtained for parameters 9 and Kintroduced by (3.10). 

In a narrow, near-wall domain the solution (6.1) can be written in the form (1.3) if the 
normalizing constants are selected in a suitable manner /8/. Therefore, the internal waves 
being studied above in a freely interacting incompressible boundary layer are the asymptotic 
of the oblique Tollmien-Schlichting waves /5,6/, being propagated at an angle to the main 
stream direction, in the limit when lcz-m, jaIl~~ne-OO.Nne-m and lal/lp/-I. 

The analysis made permits formulation of a nonlinear problem on the stability of a freely 
interaction boundary layer in the subsonic gas flow with respect to spatial perturbations. To 
do this it is sufficient to require periodicity of the required functions in the variables = 
and z without involving linearization of (1.1). The external flow domain will be described, 
as before, by the linear equation (2.1). The experimental data indicate that the nonlinear 
stage of unstable Tollmien-Schlichting wave amplification terminates by their breaking up and 
going over into three-dimensional perturbations if even initially they are plane-parallel. As 
has been shown above, the imposition of oscillations in the side direction is accompanied by 
losses in the stability of the longer-wave perturbations for a fixed Reynolds number. 
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